lib64
/
python3.6
/
Go to Home Directory
+
Upload
Create File
root@0UT1S:~$
Execute
By Order of Mr.0UT1S
[DIR] ..
N/A
[DIR] __pycache__
N/A
[DIR] asyncio
N/A
[DIR] collections
N/A
[DIR] concurrent
N/A
[DIR] config-3.6m-x86_64-linux-gnu
N/A
[DIR] ctypes
N/A
[DIR] curses
N/A
[DIR] dbm
N/A
[DIR] distutils
N/A
[DIR] email
N/A
[DIR] encodings
N/A
[DIR] ensurepip
N/A
[DIR] html
N/A
[DIR] http
N/A
[DIR] importlib
N/A
[DIR] json
N/A
[DIR] lib-dynload
N/A
[DIR] lib2to3
N/A
[DIR] logging
N/A
[DIR] multiprocessing
N/A
[DIR] pydoc_data
N/A
[DIR] site-packages
N/A
[DIR] sqlite3
N/A
[DIR] test
N/A
[DIR] unittest
N/A
[DIR] urllib
N/A
[DIR] venv
N/A
[DIR] wsgiref
N/A
[DIR] xml
N/A
[DIR] xmlrpc
N/A
__future__.py
4.73 KB
Rename
Delete
__phello__.foo.py
64 bytes
Rename
Delete
_bootlocale.py
1.27 KB
Rename
Delete
_collections_abc.py
25.77 KB
Rename
Delete
_compat_pickle.py
8.54 KB
Rename
Delete
_compression.py
5.21 KB
Rename
Delete
_dummy_thread.py
5.00 KB
Rename
Delete
_markupbase.py
14.26 KB
Rename
Delete
_osx_support.py
18.69 KB
Rename
Delete
_pydecimal.py
224.83 KB
Rename
Delete
_pyio.py
86.03 KB
Rename
Delete
_sitebuiltins.py
3.04 KB
Rename
Delete
_strptime.py
24.17 KB
Rename
Delete
_sysconfigdata_dm_linux_x86_64-linux-gnu.py
29.48 KB
Rename
Delete
_sysconfigdata_m_linux_x86_64-linux-gnu.py
29.66 KB
Rename
Delete
_threading_local.py
7.04 KB
Rename
Delete
_weakrefset.py
5.57 KB
Rename
Delete
abc.py
8.52 KB
Rename
Delete
aifc.py
31.69 KB
Rename
Delete
antigravity.py
477 bytes
Rename
Delete
argparse.py
88.25 KB
Rename
Delete
ast.py
11.88 KB
Rename
Delete
asynchat.py
11.06 KB
Rename
Delete
asyncore.py
19.69 KB
Rename
Delete
base64.py
19.91 KB
Rename
Delete
bdb.py
23.00 KB
Rename
Delete
binhex.py
13.63 KB
Rename
Delete
bisect.py
2.53 KB
Rename
Delete
bz2.py
12.19 KB
Rename
Delete
cProfile.py
5.25 KB
Rename
Delete
calendar.py
22.67 KB
Rename
Delete
cgi.py
36.35 KB
Rename
Delete
cgitb.py
11.74 KB
Rename
Delete
chunk.py
5.30 KB
Rename
Delete
cmd.py
14.51 KB
Rename
Delete
code.py
10.37 KB
Rename
Delete
codecs.py
35.43 KB
Rename
Delete
codeop.py
5.85 KB
Rename
Delete
colorsys.py
3.97 KB
Rename
Delete
compileall.py
11.84 KB
Rename
Delete
configparser.py
52.34 KB
Rename
Delete
contextlib.py
12.85 KB
Rename
Delete
copy.py
8.61 KB
Rename
Delete
copyreg.py
6.84 KB
Rename
Delete
crypt.py
1.82 KB
Rename
Delete
csv.py
15.80 KB
Rename
Delete
datetime.py
80.11 KB
Rename
Delete
decimal.py
320 bytes
Rename
Delete
difflib.py
82.40 KB
Rename
Delete
dis.py
17.71 KB
Rename
Delete
doctest.py
101.94 KB
Rename
Delete
dummy_threading.py
2.75 KB
Rename
Delete
enum.py
32.82 KB
Rename
Delete
filecmp.py
9.60 KB
Rename
Delete
fileinput.py
14.13 KB
Rename
Delete
fnmatch.py
3.09 KB
Rename
Delete
formatter.py
14.79 KB
Rename
Delete
fractions.py
23.08 KB
Rename
Delete
ftplib.py
34.78 KB
Rename
Delete
functools.py
30.61 KB
Rename
Delete
genericpath.py
4.64 KB
Rename
Delete
getopt.py
7.31 KB
Rename
Delete
getpass.py
5.85 KB
Rename
Delete
gettext.py
21.03 KB
Rename
Delete
glob.py
5.51 KB
Rename
Delete
gzip.py
19.86 KB
Rename
Delete
hashlib.py
8.59 KB
Rename
Delete
heapq.py
22.39 KB
Rename
Delete
hmac.py
6.23 KB
Rename
Delete
imaplib.py
52.05 KB
Rename
Delete
imghdr.py
3.71 KB
Rename
Delete
imp.py
10.42 KB
Rename
Delete
inspect.py
114.22 KB
Rename
Delete
io.py
3.43 KB
Rename
Delete
ipaddress.py
75.99 KB
Rename
Delete
keyword.py
2.17 KB
Rename
Delete
linecache.py
5.19 KB
Rename
Delete
locale.py
75.49 KB
Rename
Delete
lzma.py
12.68 KB
Rename
Delete
macpath.py
5.83 KB
Rename
Delete
macurl2path.py
2.67 KB
Rename
Delete
mailbox.py
76.78 KB
Rename
Delete
mailcap.py
8.85 KB
Rename
Delete
mimetypes.py
20.55 KB
Rename
Delete
modulefinder.py
22.49 KB
Rename
Delete
netrc.py
5.55 KB
Rename
Delete
nntplib.py
42.07 KB
Rename
Delete
ntpath.py
22.55 KB
Rename
Delete
nturl2path.py
2.39 KB
Rename
Delete
numbers.py
10.00 KB
Rename
Delete
opcode.py
5.69 KB
Rename
Delete
operator.py
10.61 KB
Rename
Delete
optparse.py
58.96 KB
Rename
Delete
os.py
36.65 KB
Rename
Delete
pathlib.py
47.83 KB
Rename
Delete
pdb.py
59.88 KB
Rename
Delete
pickle.py
54.39 KB
Rename
Delete
pickletools.py
89.62 KB
Rename
Delete
pipes.py
8.71 KB
Rename
Delete
pkgutil.py
20.82 KB
Rename
Delete
platform.py
46.11 KB
Rename
Delete
plistlib.py
31.53 KB
Rename
Delete
poplib.py
14.61 KB
Rename
Delete
posixpath.py
15.40 KB
Rename
Delete
pprint.py
20.37 KB
Rename
Delete
profile.py
21.51 KB
Rename
Delete
pstats.py
25.94 KB
Rename
Delete
pty.py
4.65 KB
Rename
Delete
py_compile.py
7.01 KB
Rename
Delete
pyclbr.py
13.24 KB
Rename
Delete
pydoc.py
101.08 KB
Rename
Delete
queue.py
8.57 KB
Rename
Delete
quopri.py
7.09 KB
Rename
Delete
random.py
26.80 KB
Rename
Delete
re.py
15.19 KB
Rename
Delete
reprlib.py
5.21 KB
Rename
Delete
rlcompleter.py
6.93 KB
Rename
Delete
runpy.py
11.68 KB
Rename
Delete
sched.py
6.36 KB
Rename
Delete
secrets.py
1.99 KB
Rename
Delete
selectors.py
18.98 KB
Rename
Delete
shelve.py
8.32 KB
Rename
Delete
shlex.py
12.65 KB
Rename
Delete
shutil.py
39.87 KB
Rename
Delete
signal.py
2.07 KB
Rename
Delete
site.py
20.77 KB
Rename
Delete
smtpd.py
33.91 KB
Rename
Delete
smtplib.py
43.18 KB
Rename
Delete
sndhdr.py
6.92 KB
Rename
Delete
socket.py
26.80 KB
Rename
Delete
socketserver.py
26.38 KB
Rename
Delete
sre_compile.py
18.88 KB
Rename
Delete
sre_constants.py
6.66 KB
Rename
Delete
sre_parse.py
35.68 KB
Rename
Delete
ssl.py
43.47 KB
Rename
Delete
stat.py
4.92 KB
Rename
Delete
statistics.py
20.19 KB
Rename
Delete
string.py
11.52 KB
Rename
Delete
stringprep.py
12.61 KB
Rename
Delete
struct.py
257 bytes
Rename
Delete
subprocess.py
60.88 KB
Rename
Delete
sunau.py
17.67 KB
Rename
Delete
symbol.py
2.07 KB
Rename
Delete
symtable.py
7.11 KB
Rename
Delete
sysconfig.py
24.29 KB
Rename
Delete
tabnanny.py
11.14 KB
Rename
Delete
tarfile.py
104.88 KB
Rename
Delete
telnetlib.py
22.59 KB
Rename
Delete
tempfile.py
27.41 KB
Rename
Delete
textwrap.py
19.10 KB
Rename
Delete
this.py
1003 bytes
Rename
Delete
threading.py
48.96 KB
Rename
Delete
timeit.py
13.03 KB
Rename
Delete
token.py
3.00 KB
Rename
Delete
tokenize.py
28.80 KB
Rename
Delete
trace.py
28.06 KB
Rename
Delete
traceback.py
22.91 KB
Rename
Delete
tracemalloc.py
16.27 KB
Rename
Delete
tty.py
879 bytes
Rename
Delete
types.py
8.66 KB
Rename
Delete
typing.py
78.39 KB
Rename
Delete
uu.py
6.60 KB
Rename
Delete
uuid.py
23.46 KB
Rename
Delete
warnings.py
18.05 KB
Rename
Delete
wave.py
17.29 KB
Rename
Delete
weakref.py
19.99 KB
Rename
Delete
webbrowser.py
21.26 KB
Rename
Delete
xdrlib.py
5.77 KB
Rename
Delete
zipapp.py
6.99 KB
Rename
Delete
zipfile.py
78.05 KB
Rename
Delete
"""Random variable generators. integers -------- uniform within range sequences --------- pick random element pick random sample pick weighted random sample generate random permutation distributions on the real line: ------------------------------ uniform triangular normal (Gaussian) lognormal negative exponential gamma beta pareto Weibull distributions on the circle (angles 0 to 2pi) --------------------------------------------- circular uniform von Mises General notes on the underlying Mersenne Twister core generator: * The period is 2**19937-1. * It is one of the most extensively tested generators in existence. * The random() method is implemented in C, executes in a single Python step, and is, therefore, threadsafe. """ from warnings import warn as _warn from types import MethodType as _MethodType, BuiltinMethodType as _BuiltinMethodType from math import log as _log, exp as _exp, pi as _pi, e as _e, ceil as _ceil from math import sqrt as _sqrt, acos as _acos, cos as _cos, sin as _sin from os import urandom as _urandom from _collections_abc import Set as _Set, Sequence as _Sequence from hashlib import sha512 as _sha512 import itertools as _itertools import bisect as _bisect __all__ = ["Random","seed","random","uniform","randint","choice","sample", "randrange","shuffle","normalvariate","lognormvariate", "expovariate","vonmisesvariate","gammavariate","triangular", "gauss","betavariate","paretovariate","weibullvariate", "getstate","setstate", "getrandbits", "choices", "SystemRandom"] NV_MAGICCONST = 4 * _exp(-0.5)/_sqrt(2.0) TWOPI = 2.0*_pi LOG4 = _log(4.0) SG_MAGICCONST = 1.0 + _log(4.5) BPF = 53 # Number of bits in a float RECIP_BPF = 2**-BPF # Translated by Guido van Rossum from C source provided by # Adrian Baddeley. Adapted by Raymond Hettinger for use with # the Mersenne Twister and os.urandom() core generators. import _random class Random(_random.Random): """Random number generator base class used by bound module functions. Used to instantiate instances of Random to get generators that don't share state. Class Random can also be subclassed if you want to use a different basic generator of your own devising: in that case, override the following methods: random(), seed(), getstate(), and setstate(). Optionally, implement a getrandbits() method so that randrange() can cover arbitrarily large ranges. """ VERSION = 3 # used by getstate/setstate def __init__(self, x=None): """Initialize an instance. Optional argument x controls seeding, as for Random.seed(). """ self.seed(x) self.gauss_next = None def seed(self, a=None, version=2): """Initialize internal state from hashable object. None or no argument seeds from current time or from an operating system specific randomness source if available. If *a* is an int, all bits are used. For version 2 (the default), all of the bits are used if *a* is a str, bytes, or bytearray. For version 1 (provided for reproducing random sequences from older versions of Python), the algorithm for str and bytes generates a narrower range of seeds. """ if version == 1 and isinstance(a, (str, bytes)): a = a.decode('latin-1') if isinstance(a, bytes) else a x = ord(a[0]) << 7 if a else 0 for c in map(ord, a): x = ((1000003 * x) ^ c) & 0xFFFFFFFFFFFFFFFF x ^= len(a) a = -2 if x == -1 else x if version == 2 and isinstance(a, (str, bytes, bytearray)): if isinstance(a, str): a = a.encode() a += _sha512(a).digest() a = int.from_bytes(a, 'big') super().seed(a) self.gauss_next = None def getstate(self): """Return internal state; can be passed to setstate() later.""" return self.VERSION, super().getstate(), self.gauss_next def setstate(self, state): """Restore internal state from object returned by getstate().""" version = state[0] if version == 3: version, internalstate, self.gauss_next = state super().setstate(internalstate) elif version == 2: version, internalstate, self.gauss_next = state # In version 2, the state was saved as signed ints, which causes # inconsistencies between 32/64-bit systems. The state is # really unsigned 32-bit ints, so we convert negative ints from # version 2 to positive longs for version 3. try: internalstate = tuple(x % (2**32) for x in internalstate) except ValueError as e: raise TypeError from e super().setstate(internalstate) else: raise ValueError("state with version %s passed to " "Random.setstate() of version %s" % (version, self.VERSION)) ## ---- Methods below this point do not need to be overridden when ## ---- subclassing for the purpose of using a different core generator. ## -------------------- pickle support ------------------- # Issue 17489: Since __reduce__ was defined to fix #759889 this is no # longer called; we leave it here because it has been here since random was # rewritten back in 2001 and why risk breaking something. def __getstate__(self): # for pickle return self.getstate() def __setstate__(self, state): # for pickle self.setstate(state) def __reduce__(self): return self.__class__, (), self.getstate() ## -------------------- integer methods ------------------- def randrange(self, start, stop=None, step=1, _int=int): """Choose a random item from range(start, stop[, step]). This fixes the problem with randint() which includes the endpoint; in Python this is usually not what you want. """ # This code is a bit messy to make it fast for the # common case while still doing adequate error checking. istart = _int(start) if istart != start: raise ValueError("non-integer arg 1 for randrange()") if stop is None: if istart > 0: return self._randbelow(istart) raise ValueError("empty range for randrange()") # stop argument supplied. istop = _int(stop) if istop != stop: raise ValueError("non-integer stop for randrange()") width = istop - istart if step == 1 and width > 0: return istart + self._randbelow(width) if step == 1: raise ValueError("empty range for randrange() (%d,%d, %d)" % (istart, istop, width)) # Non-unit step argument supplied. istep = _int(step) if istep != step: raise ValueError("non-integer step for randrange()") if istep > 0: n = (width + istep - 1) // istep elif istep < 0: n = (width + istep + 1) // istep else: raise ValueError("zero step for randrange()") if n <= 0: raise ValueError("empty range for randrange()") return istart + istep*self._randbelow(n) def randint(self, a, b): """Return random integer in range [a, b], including both end points. """ return self.randrange(a, b+1) def _randbelow(self, n, int=int, maxsize=1<<BPF, type=type, Method=_MethodType, BuiltinMethod=_BuiltinMethodType): "Return a random int in the range [0,n). Raises ValueError if n==0." random = self.random getrandbits = self.getrandbits # Only call self.getrandbits if the original random() builtin method # has not been overridden or if a new getrandbits() was supplied. if type(random) is BuiltinMethod or type(getrandbits) is Method: k = n.bit_length() # don't use (n-1) here because n can be 1 r = getrandbits(k) # 0 <= r < 2**k while r >= n: r = getrandbits(k) return r # There's an overridden random() method but no new getrandbits() method, # so we can only use random() from here. if n >= maxsize: _warn("Underlying random() generator does not supply \n" "enough bits to choose from a population range this large.\n" "To remove the range limitation, add a getrandbits() method.") return int(random() * n) if n == 0: raise ValueError("Boundary cannot be zero") rem = maxsize % n limit = (maxsize - rem) / maxsize # int(limit * maxsize) % n == 0 r = random() while r >= limit: r = random() return int(r*maxsize) % n ## -------------------- sequence methods ------------------- def choice(self, seq): """Choose a random element from a non-empty sequence.""" try: i = self._randbelow(len(seq)) except ValueError: raise IndexError('Cannot choose from an empty sequence') from None return seq[i] def shuffle(self, x, random=None): """Shuffle list x in place, and return None. Optional argument random is a 0-argument function returning a random float in [0.0, 1.0); if it is the default None, the standard random.random will be used. """ if random is None: randbelow = self._randbelow for i in reversed(range(1, len(x))): # pick an element in x[:i+1] with which to exchange x[i] j = randbelow(i+1) x[i], x[j] = x[j], x[i] else: _int = int for i in reversed(range(1, len(x))): # pick an element in x[:i+1] with which to exchange x[i] j = _int(random() * (i+1)) x[i], x[j] = x[j], x[i] def sample(self, population, k): """Chooses k unique random elements from a population sequence or set. Returns a new list containing elements from the population while leaving the original population unchanged. The resulting list is in selection order so that all sub-slices will also be valid random samples. This allows raffle winners (the sample) to be partitioned into grand prize and second place winners (the subslices). Members of the population need not be hashable or unique. If the population contains repeats, then each occurrence is a possible selection in the sample. To choose a sample in a range of integers, use range as an argument. This is especially fast and space efficient for sampling from a large population: sample(range(10000000), 60) """ # Sampling without replacement entails tracking either potential # selections (the pool) in a list or previous selections in a set. # When the number of selections is small compared to the # population, then tracking selections is efficient, requiring # only a small set and an occasional reselection. For # a larger number of selections, the pool tracking method is # preferred since the list takes less space than the # set and it doesn't suffer from frequent reselections. if isinstance(population, _Set): population = tuple(population) if not isinstance(population, _Sequence): raise TypeError("Population must be a sequence or set. For dicts, use list(d).") randbelow = self._randbelow n = len(population) if not 0 <= k <= n: raise ValueError("Sample larger than population or is negative") result = [None] * k setsize = 21 # size of a small set minus size of an empty list if k > 5: setsize += 4 ** _ceil(_log(k * 3, 4)) # table size for big sets if n <= setsize: # An n-length list is smaller than a k-length set pool = list(population) for i in range(k): # invariant: non-selected at [0,n-i) j = randbelow(n-i) result[i] = pool[j] pool[j] = pool[n-i-1] # move non-selected item into vacancy else: selected = set() selected_add = selected.add for i in range(k): j = randbelow(n) while j in selected: j = randbelow(n) selected_add(j) result[i] = population[j] return result def choices(self, population, weights=None, *, cum_weights=None, k=1): """Return a k sized list of population elements chosen with replacement. If the relative weights or cumulative weights are not specified, the selections are made with equal probability. """ random = self.random if cum_weights is None: if weights is None: _int = int total = len(population) return [population[_int(random() * total)] for i in range(k)] cum_weights = list(_itertools.accumulate(weights)) elif weights is not None: raise TypeError('Cannot specify both weights and cumulative weights') if len(cum_weights) != len(population): raise ValueError('The number of weights does not match the population') bisect = _bisect.bisect total = cum_weights[-1] hi = len(cum_weights) - 1 return [population[bisect(cum_weights, random() * total, 0, hi)] for i in range(k)] ## -------------------- real-valued distributions ------------------- ## -------------------- uniform distribution ------------------- def uniform(self, a, b): "Get a random number in the range [a, b) or [a, b] depending on rounding." return a + (b-a) * self.random() ## -------------------- triangular -------------------- def triangular(self, low=0.0, high=1.0, mode=None): """Triangular distribution. Continuous distribution bounded by given lower and upper limits, and having a given mode value in-between. http://en.wikipedia.org/wiki/Triangular_distribution """ u = self.random() try: c = 0.5 if mode is None else (mode - low) / (high - low) except ZeroDivisionError: return low if u > c: u = 1.0 - u c = 1.0 - c low, high = high, low return low + (high - low) * (u * c) ** 0.5 ## -------------------- normal distribution -------------------- def normalvariate(self, mu, sigma): """Normal distribution. mu is the mean, and sigma is the standard deviation. """ # mu = mean, sigma = standard deviation # Uses Kinderman and Monahan method. Reference: Kinderman, # A.J. and Monahan, J.F., "Computer generation of random # variables using the ratio of uniform deviates", ACM Trans # Math Software, 3, (1977), pp257-260. random = self.random while 1: u1 = random() u2 = 1.0 - random() z = NV_MAGICCONST*(u1-0.5)/u2 zz = z*z/4.0 if zz <= -_log(u2): break return mu + z*sigma ## -------------------- lognormal distribution -------------------- def lognormvariate(self, mu, sigma): """Log normal distribution. If you take the natural logarithm of this distribution, you'll get a normal distribution with mean mu and standard deviation sigma. mu can have any value, and sigma must be greater than zero. """ return _exp(self.normalvariate(mu, sigma)) ## -------------------- exponential distribution -------------------- def expovariate(self, lambd): """Exponential distribution. lambd is 1.0 divided by the desired mean. It should be nonzero. (The parameter would be called "lambda", but that is a reserved word in Python.) Returned values range from 0 to positive infinity if lambd is positive, and from negative infinity to 0 if lambd is negative. """ # lambd: rate lambd = 1/mean # ('lambda' is a Python reserved word) # we use 1-random() instead of random() to preclude the # possibility of taking the log of zero. return -_log(1.0 - self.random())/lambd ## -------------------- von Mises distribution -------------------- def vonmisesvariate(self, mu, kappa): """Circular data distribution. mu is the mean angle, expressed in radians between 0 and 2*pi, and kappa is the concentration parameter, which must be greater than or equal to zero. If kappa is equal to zero, this distribution reduces to a uniform random angle over the range 0 to 2*pi. """ # mu: mean angle (in radians between 0 and 2*pi) # kappa: concentration parameter kappa (>= 0) # if kappa = 0 generate uniform random angle # Based upon an algorithm published in: Fisher, N.I., # "Statistical Analysis of Circular Data", Cambridge # University Press, 1993. # Thanks to Magnus Kessler for a correction to the # implementation of step 4. random = self.random if kappa <= 1e-6: return TWOPI * random() s = 0.5 / kappa r = s + _sqrt(1.0 + s * s) while 1: u1 = random() z = _cos(_pi * u1) d = z / (r + z) u2 = random() if u2 < 1.0 - d * d or u2 <= (1.0 - d) * _exp(d): break q = 1.0 / r f = (q + z) / (1.0 + q * z) u3 = random() if u3 > 0.5: theta = (mu + _acos(f)) % TWOPI else: theta = (mu - _acos(f)) % TWOPI return theta ## -------------------- gamma distribution -------------------- def gammavariate(self, alpha, beta): """Gamma distribution. Not the gamma function! Conditions on the parameters are alpha > 0 and beta > 0. The probability distribution function is: x ** (alpha - 1) * math.exp(-x / beta) pdf(x) = -------------------------------------- math.gamma(alpha) * beta ** alpha """ # alpha > 0, beta > 0, mean is alpha*beta, variance is alpha*beta**2 # Warning: a few older sources define the gamma distribution in terms # of alpha > -1.0 if alpha <= 0.0 or beta <= 0.0: raise ValueError('gammavariate: alpha and beta must be > 0.0') random = self.random if alpha > 1.0: # Uses R.C.H. Cheng, "The generation of Gamma # variables with non-integral shape parameters", # Applied Statistics, (1977), 26, No. 1, p71-74 ainv = _sqrt(2.0 * alpha - 1.0) bbb = alpha - LOG4 ccc = alpha + ainv while 1: u1 = random() if not 1e-7 < u1 < .9999999: continue u2 = 1.0 - random() v = _log(u1/(1.0-u1))/ainv x = alpha*_exp(v) z = u1*u1*u2 r = bbb+ccc*v-x if r + SG_MAGICCONST - 4.5*z >= 0.0 or r >= _log(z): return x * beta elif alpha == 1.0: # expovariate(1) u = random() while u <= 1e-7: u = random() return -_log(u) * beta else: # alpha is between 0 and 1 (exclusive) # Uses ALGORITHM GS of Statistical Computing - Kennedy & Gentle while 1: u = random() b = (_e + alpha)/_e p = b*u if p <= 1.0: x = p ** (1.0/alpha) else: x = -_log((b-p)/alpha) u1 = random() if p > 1.0: if u1 <= x ** (alpha - 1.0): break elif u1 <= _exp(-x): break return x * beta ## -------------------- Gauss (faster alternative) -------------------- def gauss(self, mu, sigma): """Gaussian distribution. mu is the mean, and sigma is the standard deviation. This is slightly faster than the normalvariate() function. Not thread-safe without a lock around calls. """ # When x and y are two variables from [0, 1), uniformly # distributed, then # # cos(2*pi*x)*sqrt(-2*log(1-y)) # sin(2*pi*x)*sqrt(-2*log(1-y)) # # are two *independent* variables with normal distribution # (mu = 0, sigma = 1). # (Lambert Meertens) # (corrected version; bug discovered by Mike Miller, fixed by LM) # Multithreading note: When two threads call this function # simultaneously, it is possible that they will receive the # same return value. The window is very small though. To # avoid this, you have to use a lock around all calls. (I # didn't want to slow this down in the serial case by using a # lock here.) random = self.random z = self.gauss_next self.gauss_next = None if z is None: x2pi = random() * TWOPI g2rad = _sqrt(-2.0 * _log(1.0 - random())) z = _cos(x2pi) * g2rad self.gauss_next = _sin(x2pi) * g2rad return mu + z*sigma ## -------------------- beta -------------------- ## See ## http://mail.python.org/pipermail/python-bugs-list/2001-January/003752.html ## for Ivan Frohne's insightful analysis of why the original implementation: ## ## def betavariate(self, alpha, beta): ## # Discrete Event Simulation in C, pp 87-88. ## ## y = self.expovariate(alpha) ## z = self.expovariate(1.0/beta) ## return z/(y+z) ## ## was dead wrong, and how it probably got that way. def betavariate(self, alpha, beta): """Beta distribution. Conditions on the parameters are alpha > 0 and beta > 0. Returned values range between 0 and 1. """ # This version due to Janne Sinkkonen, and matches all the std # texts (e.g., Knuth Vol 2 Ed 3 pg 134 "the beta distribution"). y = self.gammavariate(alpha, 1.0) if y == 0: return 0.0 else: return y / (y + self.gammavariate(beta, 1.0)) ## -------------------- Pareto -------------------- def paretovariate(self, alpha): """Pareto distribution. alpha is the shape parameter.""" # Jain, pg. 495 u = 1.0 - self.random() return 1.0 / u ** (1.0/alpha) ## -------------------- Weibull -------------------- def weibullvariate(self, alpha, beta): """Weibull distribution. alpha is the scale parameter and beta is the shape parameter. """ # Jain, pg. 499; bug fix courtesy Bill Arms u = 1.0 - self.random() return alpha * (-_log(u)) ** (1.0/beta) ## --------------- Operating System Random Source ------------------ class SystemRandom(Random): """Alternate random number generator using sources provided by the operating system (such as /dev/urandom on Unix or CryptGenRandom on Windows). Not available on all systems (see os.urandom() for details). """ def random(self): """Get the next random number in the range [0.0, 1.0).""" return (int.from_bytes(_urandom(7), 'big') >> 3) * RECIP_BPF def getrandbits(self, k): """getrandbits(k) -> x. Generates an int with k random bits.""" if k <= 0: raise ValueError('number of bits must be greater than zero') if k != int(k): raise TypeError('number of bits should be an integer') numbytes = (k + 7) // 8 # bits / 8 and rounded up x = int.from_bytes(_urandom(numbytes), 'big') return x >> (numbytes * 8 - k) # trim excess bits def seed(self, *args, **kwds): "Stub method. Not used for a system random number generator." return None def _notimplemented(self, *args, **kwds): "Method should not be called for a system random number generator." raise NotImplementedError('System entropy source does not have state.') getstate = setstate = _notimplemented ## -------------------- test program -------------------- def _test_generator(n, func, args): import time print(n, 'times', func.__name__) total = 0.0 sqsum = 0.0 smallest = 1e10 largest = -1e10 t0 = time.time() for i in range(n): x = func(*args) total += x sqsum = sqsum + x*x smallest = min(x, smallest) largest = max(x, largest) t1 = time.time() print(round(t1-t0, 3), 'sec,', end=' ') avg = total/n stddev = _sqrt(sqsum/n - avg*avg) print('avg %g, stddev %g, min %g, max %g\n' % \ (avg, stddev, smallest, largest)) def _test(N=2000): _test_generator(N, random, ()) _test_generator(N, normalvariate, (0.0, 1.0)) _test_generator(N, lognormvariate, (0.0, 1.0)) _test_generator(N, vonmisesvariate, (0.0, 1.0)) _test_generator(N, gammavariate, (0.01, 1.0)) _test_generator(N, gammavariate, (0.1, 1.0)) _test_generator(N, gammavariate, (0.1, 2.0)) _test_generator(N, gammavariate, (0.5, 1.0)) _test_generator(N, gammavariate, (0.9, 1.0)) _test_generator(N, gammavariate, (1.0, 1.0)) _test_generator(N, gammavariate, (2.0, 1.0)) _test_generator(N, gammavariate, (20.0, 1.0)) _test_generator(N, gammavariate, (200.0, 1.0)) _test_generator(N, gauss, (0.0, 1.0)) _test_generator(N, betavariate, (3.0, 3.0)) _test_generator(N, triangular, (0.0, 1.0, 1.0/3.0)) # Create one instance, seeded from current time, and export its methods # as module-level functions. The functions share state across all uses #(both in the user's code and in the Python libraries), but that's fine # for most programs and is easier for the casual user than making them # instantiate their own Random() instance. _inst = Random() seed = _inst.seed random = _inst.random uniform = _inst.uniform triangular = _inst.triangular randint = _inst.randint choice = _inst.choice randrange = _inst.randrange sample = _inst.sample shuffle = _inst.shuffle choices = _inst.choices normalvariate = _inst.normalvariate lognormvariate = _inst.lognormvariate expovariate = _inst.expovariate vonmisesvariate = _inst.vonmisesvariate gammavariate = _inst.gammavariate gauss = _inst.gauss betavariate = _inst.betavariate paretovariate = _inst.paretovariate weibullvariate = _inst.weibullvariate getstate = _inst.getstate setstate = _inst.setstate getrandbits = _inst.getrandbits if __name__ == '__main__': _test()
Save