opt
/
alt
/
ruby26
/
lib64
/
ruby
/
2.6.0
/
Go to Home Directory
+
Upload
Create File
root@0UT1S:~$
Execute
By Order of Mr.0UT1S
[DIR] ..
N/A
[DIR] bundler
N/A
[DIR] cgi
N/A
[DIR] csv
N/A
[DIR] digest
N/A
[DIR] drb
N/A
[DIR] e2mmap
N/A
[DIR] fiddle
N/A
[DIR] fileutils
N/A
[DIR] forwardable
N/A
[DIR] io
N/A
[DIR] irb
N/A
[DIR] json
N/A
[DIR] matrix
N/A
[DIR] net
N/A
[DIR] openssl
N/A
[DIR] optparse
N/A
[DIR] psych
N/A
[DIR] racc
N/A
[DIR] rdoc
N/A
[DIR] rexml
N/A
[DIR] rinda
N/A
[DIR] ripper
N/A
[DIR] rss
N/A
[DIR] rubygems
N/A
[DIR] shell
N/A
[DIR] syslog
N/A
[DIR] thwait
N/A
[DIR] tracer
N/A
[DIR] unicode_normalize
N/A
[DIR] uri
N/A
[DIR] webrick
N/A
[DIR] x86_64-linux
N/A
[DIR] yaml
N/A
English.rb
6.31 KB
Rename
Delete
abbrev.rb
3.49 KB
Rename
Delete
base64.rb
3.30 KB
Rename
Delete
benchmark.rb
18.07 KB
Rename
Delete
bigdecimal.rb
179 bytes
Rename
Delete
bundler.rb
17.82 KB
Rename
Delete
cgi.rb
9.80 KB
Rename
Delete
cmath.rb
9.49 KB
Rename
Delete
coverage.rb
368 bytes
Rename
Delete
csv.rb
52.00 KB
Rename
Delete
date.rb
1.01 KB
Rename
Delete
debug.rb
29.97 KB
Rename
Delete
delegate.rb
10.44 KB
Rename
Delete
digest.rb
2.83 KB
Rename
Delete
drb.rb
50 bytes
Rename
Delete
e2mmap.rb
3.94 KB
Rename
Delete
erb.rb
28.73 KB
Rename
Delete
expect.rb
2.17 KB
Rename
Delete
fiddle.rb
1.68 KB
Rename
Delete
fileutils.rb
47.16 KB
Rename
Delete
find.rb
2.47 KB
Rename
Delete
forwardable.rb
8.49 KB
Rename
Delete
getoptlong.rb
15.42 KB
Rename
Delete
ipaddr.rb
19.56 KB
Rename
Delete
irb.rb
22.53 KB
Rename
Delete
json.rb
1.77 KB
Rename
Delete
kconv.rb
5.77 KB
Rename
Delete
logger.rb
23.47 KB
Rename
Delete
matrix.rb
60.17 KB
Rename
Delete
mkmf.rb
84.87 KB
Rename
Delete
monitor.rb
7.87 KB
Rename
Delete
mutex_m.rb
2.16 KB
Rename
Delete
observer.rb
5.83 KB
Rename
Delete
open-uri.rb
25.13 KB
Rename
Delete
open3.rb
21.81 KB
Rename
Delete
openssl.rb
469 bytes
Rename
Delete
optionparser.rb
59 bytes
Rename
Delete
optparse.rb
57.74 KB
Rename
Delete
ostruct.rb
10.65 KB
Rename
Delete
pathname.rb
16.17 KB
Rename
Delete
pp.rb
15.08 KB
Rename
Delete
prettyprint.rb
15.89 KB
Rename
Delete
prime.rb
12.37 KB
Rename
Delete
profile.rb
235 bytes
Rename
Delete
profiler.rb
4.54 KB
Rename
Delete
pstore.rb
14.70 KB
Rename
Delete
psych.rb
21.11 KB
Rename
Delete
rdoc.rb
4.88 KB
Rename
Delete
resolv-replace.rb
1.76 KB
Rename
Delete
resolv.rb
73.44 KB
Rename
Delete
ripper.rb
2.44 KB
Rename
Delete
rss.rb
2.87 KB
Rename
Delete
rubygems.rb
36.11 KB
Rename
Delete
scanf.rb
23.55 KB
Rename
Delete
securerandom.rb
8.98 KB
Rename
Delete
set.rb
24.07 KB
Rename
Delete
shell.rb
11.39 KB
Rename
Delete
shellwords.rb
6.66 KB
Rename
Delete
singleton.rb
4.04 KB
Rename
Delete
socket.rb
43.51 KB
Rename
Delete
sync.rb
7.23 KB
Rename
Delete
tempfile.rb
11.21 KB
Rename
Delete
thwait.rb
3.33 KB
Rename
Delete
time.rb
23.56 KB
Rename
Delete
timeout.rb
3.81 KB
Rename
Delete
tmpdir.rb
4.25 KB
Rename
Delete
tracer.rb
6.42 KB
Rename
Delete
tsort.rb
14.30 KB
Rename
Delete
un.rb
9.95 KB
Rename
Delete
uri.rb
3.12 KB
Rename
Delete
weakref.rb
1.44 KB
Rename
Delete
webrick.rb
6.72 KB
Rename
Delete
yaml.rb
1.81 KB
Rename
Delete
# frozen_string_literal: true # # = open3.rb: Popen, but with stderr, too # # Author:: Yukihiro Matsumoto # Documentation:: Konrad Meyer # # Open3 gives you access to stdin, stdout, and stderr when running other # programs. # # # Open3 grants you access to stdin, stdout, stderr and a thread to wait for the # child process when running another program. # You can specify various attributes, redirections, current directory, etc., of # the program in the same way as for Process.spawn. # # - Open3.popen3 : pipes for stdin, stdout, stderr # - Open3.popen2 : pipes for stdin, stdout # - Open3.popen2e : pipes for stdin, merged stdout and stderr # - Open3.capture3 : give a string for stdin; get strings for stdout, stderr # - Open3.capture2 : give a string for stdin; get a string for stdout # - Open3.capture2e : give a string for stdin; get a string for merged stdout and stderr # - Open3.pipeline_rw : pipes for first stdin and last stdout of a pipeline # - Open3.pipeline_r : pipe for last stdout of a pipeline # - Open3.pipeline_w : pipe for first stdin of a pipeline # - Open3.pipeline_start : run a pipeline without waiting # - Open3.pipeline : run a pipeline and wait for its completion # module Open3 # Open stdin, stdout, and stderr streams and start external executable. # In addition, a thread to wait for the started process is created. # The thread has a pid method and a thread variable :pid which is the pid of # the started process. # # Block form: # # Open3.popen3([env,] cmd... [, opts]) {|stdin, stdout, stderr, wait_thr| # pid = wait_thr.pid # pid of the started process. # ... # exit_status = wait_thr.value # Process::Status object returned. # } # # Non-block form: # # stdin, stdout, stderr, wait_thr = Open3.popen3([env,] cmd... [, opts]) # pid = wait_thr[:pid] # pid of the started process # ... # stdin.close # stdin, stdout and stderr should be closed explicitly in this form. # stdout.close # stderr.close # exit_status = wait_thr.value # Process::Status object returned. # # The parameters env, cmd, and opts are passed to Process.spawn. # A commandline string and a list of argument strings can be accepted as follows: # # Open3.popen3("echo abc") {|i, o, e, t| ... } # Open3.popen3("echo", "abc") {|i, o, e, t| ... } # Open3.popen3(["echo", "argv0"], "abc") {|i, o, e, t| ... } # # If the last parameter, opts, is a Hash, it is recognized as an option for Process.spawn. # # Open3.popen3("pwd", :chdir=>"/") {|i,o,e,t| # p o.read.chomp #=> "/" # } # # wait_thr.value waits for the termination of the process. # The block form also waits for the process when it returns. # # Closing stdin, stdout and stderr does not wait for the process to complete. # # You should be careful to avoid deadlocks. # Since pipes are fixed length buffers, # Open3.popen3("prog") {|i, o, e, t| o.read } deadlocks if # the program generates too much output on stderr. # You should read stdout and stderr simultaneously (using threads or IO.select). # However, if you don't need stderr output, you can use Open3.popen2. # If merged stdout and stderr output is not a problem, you can use Open3.popen2e. # If you really need stdout and stderr output as separate strings, you can consider Open3.capture3. # def popen3(*cmd, &block) if Hash === cmd.last opts = cmd.pop.dup else opts = {} end in_r, in_w = IO.pipe opts[:in] = in_r in_w.sync = true out_r, out_w = IO.pipe opts[:out] = out_w err_r, err_w = IO.pipe opts[:err] = err_w popen_run(cmd, opts, [in_r, out_w, err_w], [in_w, out_r, err_r], &block) end module_function :popen3 # Open3.popen2 is similar to Open3.popen3 except that it doesn't create a pipe for # the standard error stream. # # Block form: # # Open3.popen2([env,] cmd... [, opts]) {|stdin, stdout, wait_thr| # pid = wait_thr.pid # pid of the started process. # ... # exit_status = wait_thr.value # Process::Status object returned. # } # # Non-block form: # # stdin, stdout, wait_thr = Open3.popen2([env,] cmd... [, opts]) # ... # stdin.close # stdin and stdout should be closed explicitly in this form. # stdout.close # # See Process.spawn for the optional hash arguments _env_ and _opts_. # # Example: # # Open3.popen2("wc -c") {|i,o,t| # i.print "answer to life the universe and everything" # i.close # p o.gets #=> "42\n" # } # # Open3.popen2("bc -q") {|i,o,t| # i.puts "obase=13" # i.puts "6 * 9" # p o.gets #=> "42\n" # } # # Open3.popen2("dc") {|i,o,t| # i.print "42P" # i.close # p o.read #=> "*" # } # def popen2(*cmd, &block) if Hash === cmd.last opts = cmd.pop.dup else opts = {} end in_r, in_w = IO.pipe opts[:in] = in_r in_w.sync = true out_r, out_w = IO.pipe opts[:out] = out_w popen_run(cmd, opts, [in_r, out_w], [in_w, out_r], &block) end module_function :popen2 # Open3.popen2e is similar to Open3.popen3 except that it merges # the standard output stream and the standard error stream. # # Block form: # # Open3.popen2e([env,] cmd... [, opts]) {|stdin, stdout_and_stderr, wait_thr| # pid = wait_thr.pid # pid of the started process. # ... # exit_status = wait_thr.value # Process::Status object returned. # } # # Non-block form: # # stdin, stdout_and_stderr, wait_thr = Open3.popen2e([env,] cmd... [, opts]) # ... # stdin.close # stdin and stdout_and_stderr should be closed explicitly in this form. # stdout_and_stderr.close # # See Process.spawn for the optional hash arguments _env_ and _opts_. # # Example: # # check gcc warnings # source = "foo.c" # Open3.popen2e("gcc", "-Wall", source) {|i,oe,t| # oe.each {|line| # if /warning/ =~ line # ... # end # } # } # def popen2e(*cmd, &block) if Hash === cmd.last opts = cmd.pop.dup else opts = {} end in_r, in_w = IO.pipe opts[:in] = in_r in_w.sync = true out_r, out_w = IO.pipe opts[[:out, :err]] = out_w popen_run(cmd, opts, [in_r, out_w], [in_w, out_r], &block) end module_function :popen2e def popen_run(cmd, opts, child_io, parent_io) # :nodoc: pid = spawn(*cmd, opts) wait_thr = Process.detach(pid) child_io.each(&:close) result = [*parent_io, wait_thr] if defined? yield begin return yield(*result) ensure parent_io.each(&:close) wait_thr.join end end result end module_function :popen_run class << self private :popen_run end # Open3.capture3 captures the standard output and the standard error of a command. # # stdout_str, stderr_str, status = Open3.capture3([env,] cmd... [, opts]) # # The arguments env, cmd and opts are passed to Open3.popen3 except # <code>opts[:stdin_data]</code> and <code>opts[:binmode]</code>. See Process.spawn. # # If <code>opts[:stdin_data]</code> is specified, it is sent to the command's standard input. # # If <code>opts[:binmode]</code> is true, internal pipes are set to binary mode. # # Examples: # # # dot is a command of graphviz. # graph = <<'End' # digraph g { # a -> b # } # End # drawn_graph, dot_log = Open3.capture3("dot -v", :stdin_data=>graph) # # o, e, s = Open3.capture3("echo abc; sort >&2", :stdin_data=>"foo\nbar\nbaz\n") # p o #=> "abc\n" # p e #=> "bar\nbaz\nfoo\n" # p s #=> #<Process::Status: pid 32682 exit 0> # # # generate a thumbnail image using the convert command of ImageMagick. # # However, if the image is really stored in a file, # # system("convert", "-thumbnail", "80", "png:#{filename}", "png:-") is better # # because of reduced memory consumption. # # But if the image is stored in a DB or generated by the gnuplot Open3.capture2 example, # # Open3.capture3 should be considered. # # # image = File.read("/usr/share/openclipart/png/animals/mammals/sheep-md-v0.1.png", :binmode=>true) # thumbnail, err, s = Open3.capture3("convert -thumbnail 80 png:- png:-", :stdin_data=>image, :binmode=>true) # if s.success? # STDOUT.binmode; print thumbnail # end # def capture3(*cmd) if Hash === cmd.last opts = cmd.pop.dup else opts = {} end stdin_data = opts.delete(:stdin_data) || '' binmode = opts.delete(:binmode) popen3(*cmd, opts) {|i, o, e, t| if binmode i.binmode o.binmode e.binmode end out_reader = Thread.new { o.read } err_reader = Thread.new { e.read } begin if stdin_data.respond_to? :readpartial IO.copy_stream(stdin_data, i) else i.write stdin_data end rescue Errno::EPIPE end i.close [out_reader.value, err_reader.value, t.value] } end module_function :capture3 # Open3.capture2 captures the standard output of a command. # # stdout_str, status = Open3.capture2([env,] cmd... [, opts]) # # The arguments env, cmd and opts are passed to Open3.popen3 except # <code>opts[:stdin_data]</code> and <code>opts[:binmode]</code>. See Process.spawn. # # If <code>opts[:stdin_data]</code> is specified, it is sent to the command's standard input. # # If <code>opts[:binmode]</code> is true, internal pipes are set to binary mode. # # Example: # # # factor is a command for integer factorization. # o, s = Open3.capture2("factor", :stdin_data=>"42") # p o #=> "42: 2 3 7\n" # # # generate x**2 graph in png using gnuplot. # gnuplot_commands = <<"End" # set terminal png # plot x**2, "-" with lines # 1 14 # 2 1 # 3 8 # 4 5 # e # End # image, s = Open3.capture2("gnuplot", :stdin_data=>gnuplot_commands, :binmode=>true) # def capture2(*cmd) if Hash === cmd.last opts = cmd.pop.dup else opts = {} end stdin_data = opts.delete(:stdin_data) binmode = opts.delete(:binmode) popen2(*cmd, opts) {|i, o, t| if binmode i.binmode o.binmode end out_reader = Thread.new { o.read } if stdin_data begin if stdin_data.respond_to? :readpartial IO.copy_stream(stdin_data, i) else i.write stdin_data end rescue Errno::EPIPE end end i.close [out_reader.value, t.value] } end module_function :capture2 # Open3.capture2e captures the standard output and the standard error of a command. # # stdout_and_stderr_str, status = Open3.capture2e([env,] cmd... [, opts]) # # The arguments env, cmd and opts are passed to Open3.popen3 except # <code>opts[:stdin_data]</code> and <code>opts[:binmode]</code>. See Process.spawn. # # If <code>opts[:stdin_data]</code> is specified, it is sent to the command's standard input. # # If <code>opts[:binmode]</code> is true, internal pipes are set to binary mode. # # Example: # # # capture make log # make_log, s = Open3.capture2e("make") # def capture2e(*cmd) if Hash === cmd.last opts = cmd.pop.dup else opts = {} end stdin_data = opts.delete(:stdin_data) binmode = opts.delete(:binmode) popen2e(*cmd, opts) {|i, oe, t| if binmode i.binmode oe.binmode end outerr_reader = Thread.new { oe.read } if stdin_data begin if stdin_data.respond_to? :readpartial IO.copy_stream(stdin_data, i) else i.write stdin_data end rescue Errno::EPIPE end end i.close [outerr_reader.value, t.value] } end module_function :capture2e # Open3.pipeline_rw starts a list of commands as a pipeline with pipes # which connect to stdin of the first command and stdout of the last command. # # Open3.pipeline_rw(cmd1, cmd2, ... [, opts]) {|first_stdin, last_stdout, wait_threads| # ... # } # # first_stdin, last_stdout, wait_threads = Open3.pipeline_rw(cmd1, cmd2, ... [, opts]) # ... # first_stdin.close # last_stdout.close # # Each cmd is a string or an array. # If it is an array, the elements are passed to Process.spawn. # # cmd: # commandline command line string which is passed to a shell # [env, commandline, opts] command line string which is passed to a shell # [env, cmdname, arg1, ..., opts] command name and one or more arguments (no shell) # [env, [cmdname, argv0], arg1, ..., opts] command name and arguments including argv[0] (no shell) # # Note that env and opts are optional, as for Process.spawn. # # The options to pass to Process.spawn are constructed by merging # +opts+, the last hash element of the array, and # specifications for the pipes between each of the commands. # # Example: # # Open3.pipeline_rw("tr -dc A-Za-z", "wc -c") {|i, o, ts| # i.puts "All persons more than a mile high to leave the court." # i.close # p o.gets #=> "42\n" # } # # Open3.pipeline_rw("sort", "cat -n") {|stdin, stdout, wait_thrs| # stdin.puts "foo" # stdin.puts "bar" # stdin.puts "baz" # stdin.close # send EOF to sort. # p stdout.read #=> " 1\tbar\n 2\tbaz\n 3\tfoo\n" # } def pipeline_rw(*cmds, &block) if Hash === cmds.last opts = cmds.pop.dup else opts = {} end in_r, in_w = IO.pipe opts[:in] = in_r in_w.sync = true out_r, out_w = IO.pipe opts[:out] = out_w pipeline_run(cmds, opts, [in_r, out_w], [in_w, out_r], &block) end module_function :pipeline_rw # Open3.pipeline_r starts a list of commands as a pipeline with a pipe # which connects to stdout of the last command. # # Open3.pipeline_r(cmd1, cmd2, ... [, opts]) {|last_stdout, wait_threads| # ... # } # # last_stdout, wait_threads = Open3.pipeline_r(cmd1, cmd2, ... [, opts]) # ... # last_stdout.close # # Each cmd is a string or an array. # If it is an array, the elements are passed to Process.spawn. # # cmd: # commandline command line string which is passed to a shell # [env, commandline, opts] command line string which is passed to a shell # [env, cmdname, arg1, ..., opts] command name and one or more arguments (no shell) # [env, [cmdname, argv0], arg1, ..., opts] command name and arguments including argv[0] (no shell) # # Note that env and opts are optional, as for Process.spawn. # # Example: # # Open3.pipeline_r("zcat /var/log/apache2/access.log.*.gz", # [{"LANG"=>"C"}, "grep", "GET /favicon.ico"], # "logresolve") {|o, ts| # o.each_line {|line| # ... # } # } # # Open3.pipeline_r("yes", "head -10") {|o, ts| # p o.read #=> "y\ny\ny\ny\ny\ny\ny\ny\ny\ny\n" # p ts[0].value #=> #<Process::Status: pid 24910 SIGPIPE (signal 13)> # p ts[1].value #=> #<Process::Status: pid 24913 exit 0> # } # def pipeline_r(*cmds, &block) if Hash === cmds.last opts = cmds.pop.dup else opts = {} end out_r, out_w = IO.pipe opts[:out] = out_w pipeline_run(cmds, opts, [out_w], [out_r], &block) end module_function :pipeline_r # Open3.pipeline_w starts a list of commands as a pipeline with a pipe # which connects to stdin of the first command. # # Open3.pipeline_w(cmd1, cmd2, ... [, opts]) {|first_stdin, wait_threads| # ... # } # # first_stdin, wait_threads = Open3.pipeline_w(cmd1, cmd2, ... [, opts]) # ... # first_stdin.close # # Each cmd is a string or an array. # If it is an array, the elements are passed to Process.spawn. # # cmd: # commandline command line string which is passed to a shell # [env, commandline, opts] command line string which is passed to a shell # [env, cmdname, arg1, ..., opts] command name and one or more arguments (no shell) # [env, [cmdname, argv0], arg1, ..., opts] command name and arguments including argv[0] (no shell) # # Note that env and opts are optional, as for Process.spawn. # # Example: # # Open3.pipeline_w("bzip2 -c", :out=>"/tmp/hello.bz2") {|i, ts| # i.puts "hello" # } # def pipeline_w(*cmds, &block) if Hash === cmds.last opts = cmds.pop.dup else opts = {} end in_r, in_w = IO.pipe opts[:in] = in_r in_w.sync = true pipeline_run(cmds, opts, [in_r], [in_w], &block) end module_function :pipeline_w # Open3.pipeline_start starts a list of commands as a pipeline. # No pipes are created for stdin of the first command and # stdout of the last command. # # Open3.pipeline_start(cmd1, cmd2, ... [, opts]) {|wait_threads| # ... # } # # wait_threads = Open3.pipeline_start(cmd1, cmd2, ... [, opts]) # ... # # Each cmd is a string or an array. # If it is an array, the elements are passed to Process.spawn. # # cmd: # commandline command line string which is passed to a shell # [env, commandline, opts] command line string which is passed to a shell # [env, cmdname, arg1, ..., opts] command name and one or more arguments (no shell) # [env, [cmdname, argv0], arg1, ..., opts] command name and arguments including argv[0] (no shell) # # Note that env and opts are optional, as for Process.spawn. # # Example: # # # Run xeyes in 10 seconds. # Open3.pipeline_start("xeyes") {|ts| # sleep 10 # t = ts[0] # Process.kill("TERM", t.pid) # p t.value #=> #<Process::Status: pid 911 SIGTERM (signal 15)> # } # # # Convert pdf to ps and send it to a printer. # # Collect error message of pdftops and lpr. # pdf_file = "paper.pdf" # printer = "printer-name" # err_r, err_w = IO.pipe # Open3.pipeline_start(["pdftops", pdf_file, "-"], # ["lpr", "-P#{printer}"], # :err=>err_w) {|ts| # err_w.close # p err_r.read # error messages of pdftops and lpr. # } # def pipeline_start(*cmds, &block) if Hash === cmds.last opts = cmds.pop.dup else opts = {} end if block pipeline_run(cmds, opts, [], [], &block) else ts, = pipeline_run(cmds, opts, [], []) ts end end module_function :pipeline_start # Open3.pipeline starts a list of commands as a pipeline. # It waits for the completion of the commands. # No pipes are created for stdin of the first command and # stdout of the last command. # # status_list = Open3.pipeline(cmd1, cmd2, ... [, opts]) # # Each cmd is a string or an array. # If it is an array, the elements are passed to Process.spawn. # # cmd: # commandline command line string which is passed to a shell # [env, commandline, opts] command line string which is passed to a shell # [env, cmdname, arg1, ..., opts] command name and one or more arguments (no shell) # [env, [cmdname, argv0], arg1, ..., opts] command name and arguments including argv[0] (no shell) # # Note that env and opts are optional, as Process.spawn. # # Example: # # fname = "/usr/share/man/man1/ruby.1.gz" # p Open3.pipeline(["zcat", fname], "nroff -man", "less") # #=> [#<Process::Status: pid 11817 exit 0>, # # #<Process::Status: pid 11820 exit 0>, # # #<Process::Status: pid 11828 exit 0>] # # fname = "/usr/share/man/man1/ls.1.gz" # Open3.pipeline(["zcat", fname], "nroff -man", "colcrt") # # # convert PDF to PS and send to a printer by lpr # pdf_file = "paper.pdf" # printer = "printer-name" # Open3.pipeline(["pdftops", pdf_file, "-"], # ["lpr", "-P#{printer}"]) # # # count lines # Open3.pipeline("sort", "uniq -c", :in=>"names.txt", :out=>"count") # # # cyclic pipeline # r,w = IO.pipe # w.print "ibase=14\n10\n" # Open3.pipeline("bc", "tee /dev/tty", :in=>r, :out=>w) # #=> 14 # # 18 # # 22 # # 30 # # 42 # # 58 # # 78 # # 106 # # 202 # def pipeline(*cmds) if Hash === cmds.last opts = cmds.pop.dup else opts = {} end pipeline_run(cmds, opts, [], []) {|ts| ts.map(&:value) } end module_function :pipeline def pipeline_run(cmds, pipeline_opts, child_io, parent_io) # :nodoc: if cmds.empty? raise ArgumentError, "no commands" end opts_base = pipeline_opts.dup opts_base.delete :in opts_base.delete :out wait_thrs = [] r = nil cmds.each_with_index {|cmd, i| cmd_opts = opts_base.dup if String === cmd cmd = [cmd] else cmd_opts.update cmd.pop if Hash === cmd.last end if i == 0 if !cmd_opts.include?(:in) if pipeline_opts.include?(:in) cmd_opts[:in] = pipeline_opts[:in] end end else cmd_opts[:in] = r end if i != cmds.length - 1 r2, w2 = IO.pipe cmd_opts[:out] = w2 else if !cmd_opts.include?(:out) if pipeline_opts.include?(:out) cmd_opts[:out] = pipeline_opts[:out] end end end pid = spawn(*cmd, cmd_opts) wait_thrs << Process.detach(pid) r&.close w2&.close r = r2 } result = parent_io + [wait_thrs] child_io.each(&:close) if defined? yield begin return yield(*result) ensure parent_io.each(&:close) wait_thrs.each(&:join) end end result end module_function :pipeline_run class << self private :pipeline_run end end
Save