opt
/
hc_python
/
lib
/
python3.12
/
site-packages
/
pydantic
/
v1
/
Go to Home Directory
+
Upload
Create File
root@0UT1S:~$
Execute
By Order of Mr.0UT1S
[DIR] ..
N/A
[DIR] __pycache__
N/A
__init__.py
2.88 KB
Rename
Delete
_hypothesis_plugin.py
14.50 KB
Rename
Delete
annotated_types.py
3.08 KB
Rename
Delete
class_validators.py
14.33 KB
Rename
Delete
color.py
16.45 KB
Rename
Delete
config.py
6.38 KB
Rename
Delete
dataclasses.py
17.75 KB
Rename
Delete
datetime_parse.py
7.54 KB
Rename
Delete
decorator.py
10.10 KB
Rename
Delete
env_settings.py
13.77 KB
Rename
Delete
error_wrappers.py
5.07 KB
Rename
Delete
errors.py
17.31 KB
Rename
Delete
fields.py
49.46 KB
Rename
Delete
generics.py
17.45 KB
Rename
Delete
json.py
3.31 KB
Rename
Delete
main.py
43.50 KB
Rename
Delete
mypy.py
37.87 KB
Rename
Delete
networks.py
21.61 KB
Rename
Delete
parse.py
1.78 KB
Rename
Delete
py.typed
0 bytes
Rename
Delete
schema.py
46.64 KB
Rename
Delete
tools.py
2.81 KB
Rename
Delete
types.py
34.62 KB
Rename
Delete
typing.py
18.93 KB
Rename
Delete
utils.py
25.31 KB
Rename
Delete
validators.py
21.48 KB
Rename
Delete
version.py
1.01 KB
Rename
Delete
import sys import types import typing from typing import ( TYPE_CHECKING, Any, ClassVar, Dict, ForwardRef, Generic, Iterator, List, Mapping, Optional, Tuple, Type, TypeVar, Union, cast, ) from weakref import WeakKeyDictionary, WeakValueDictionary from typing_extensions import Annotated, Literal as ExtLiteral from pydantic.v1.class_validators import gather_all_validators from pydantic.v1.fields import DeferredType from pydantic.v1.main import BaseModel, create_model from pydantic.v1.types import JsonWrapper from pydantic.v1.typing import display_as_type, get_all_type_hints, get_args, get_origin, typing_base from pydantic.v1.utils import all_identical, lenient_issubclass if sys.version_info >= (3, 10): from typing import _UnionGenericAlias if sys.version_info >= (3, 8): from typing import Literal GenericModelT = TypeVar('GenericModelT', bound='GenericModel') TypeVarType = Any # since mypy doesn't allow the use of TypeVar as a type CacheKey = Tuple[Type[Any], Any, Tuple[Any, ...]] Parametrization = Mapping[TypeVarType, Type[Any]] # weak dictionaries allow the dynamically created parametrized versions of generic models to get collected # once they are no longer referenced by the caller. if sys.version_info >= (3, 9): # Typing for weak dictionaries available at 3.9 GenericTypesCache = WeakValueDictionary[CacheKey, Type[BaseModel]] AssignedParameters = WeakKeyDictionary[Type[BaseModel], Parametrization] else: GenericTypesCache = WeakValueDictionary AssignedParameters = WeakKeyDictionary # _generic_types_cache is a Mapping from __class_getitem__ arguments to the parametrized version of generic models. # This ensures multiple calls of e.g. A[B] return always the same class. _generic_types_cache = GenericTypesCache() # _assigned_parameters is a Mapping from parametrized version of generic models to assigned types of parametrizations # as captured during construction of the class (not instances). # E.g., for generic model `Model[A, B]`, when parametrized model `Model[int, str]` is created, # `Model[int, str]`: {A: int, B: str}` will be stored in `_assigned_parameters`. # (This information is only otherwise available after creation from the class name string). _assigned_parameters = AssignedParameters() class GenericModel(BaseModel): __slots__ = () __concrete__: ClassVar[bool] = False if TYPE_CHECKING: # Putting this in a TYPE_CHECKING block allows us to replace `if Generic not in cls.__bases__` with # `not hasattr(cls, "__parameters__")`. This means we don't need to force non-concrete subclasses of # `GenericModel` to also inherit from `Generic`, which would require changes to the use of `create_model` below. __parameters__: ClassVar[Tuple[TypeVarType, ...]] # Setting the return type as Type[Any] instead of Type[BaseModel] prevents PyCharm warnings def __class_getitem__(cls: Type[GenericModelT], params: Union[Type[Any], Tuple[Type[Any], ...]]) -> Type[Any]: """Instantiates a new class from a generic class `cls` and type variables `params`. :param params: Tuple of types the class . Given a generic class `Model` with 2 type variables and a concrete model `Model[str, int]`, the value `(str, int)` would be passed to `params`. :return: New model class inheriting from `cls` with instantiated types described by `params`. If no parameters are given, `cls` is returned as is. """ def _cache_key(_params: Any) -> CacheKey: args = get_args(_params) # python returns a list for Callables, which is not hashable if len(args) == 2 and isinstance(args[0], list): args = (tuple(args[0]), args[1]) return cls, _params, args cached = _generic_types_cache.get(_cache_key(params)) if cached is not None: return cached if cls.__concrete__ and Generic not in cls.__bases__: raise TypeError('Cannot parameterize a concrete instantiation of a generic model') if not isinstance(params, tuple): params = (params,) if cls is GenericModel and any(isinstance(param, TypeVar) for param in params): raise TypeError('Type parameters should be placed on typing.Generic, not GenericModel') if not hasattr(cls, '__parameters__'): raise TypeError(f'Type {cls.__name__} must inherit from typing.Generic before being parameterized') check_parameters_count(cls, params) # Build map from generic typevars to passed params typevars_map: Dict[TypeVarType, Type[Any]] = dict(zip(cls.__parameters__, params)) if all_identical(typevars_map.keys(), typevars_map.values()) and typevars_map: return cls # if arguments are equal to parameters it's the same object # Create new model with original model as parent inserting fields with DeferredType. model_name = cls.__concrete_name__(params) validators = gather_all_validators(cls) type_hints = get_all_type_hints(cls).items() instance_type_hints = {k: v for k, v in type_hints if get_origin(v) is not ClassVar} fields = {k: (DeferredType(), cls.__fields__[k].field_info) for k in instance_type_hints if k in cls.__fields__} model_module, called_globally = get_caller_frame_info() created_model = cast( Type[GenericModel], # casting ensures mypy is aware of the __concrete__ and __parameters__ attributes create_model( model_name, __module__=model_module or cls.__module__, __base__=(cls,) + tuple(cls.__parameterized_bases__(typevars_map)), __config__=None, __validators__=validators, __cls_kwargs__=None, **fields, ), ) _assigned_parameters[created_model] = typevars_map if called_globally: # create global reference and therefore allow pickling object_by_reference = None reference_name = model_name reference_module_globals = sys.modules[created_model.__module__].__dict__ while object_by_reference is not created_model: object_by_reference = reference_module_globals.setdefault(reference_name, created_model) reference_name += '_' created_model.Config = cls.Config # Find any typevars that are still present in the model. # If none are left, the model is fully "concrete", otherwise the new # class is a generic class as well taking the found typevars as # parameters. new_params = tuple( {param: None for param in iter_contained_typevars(typevars_map.values())} ) # use dict as ordered set created_model.__concrete__ = not new_params if new_params: created_model.__parameters__ = new_params # Save created model in cache so we don't end up creating duplicate # models that should be identical. _generic_types_cache[_cache_key(params)] = created_model if len(params) == 1: _generic_types_cache[_cache_key(params[0])] = created_model # Recursively walk class type hints and replace generic typevars # with concrete types that were passed. _prepare_model_fields(created_model, fields, instance_type_hints, typevars_map) return created_model @classmethod def __concrete_name__(cls: Type[Any], params: Tuple[Type[Any], ...]) -> str: """Compute class name for child classes. :param params: Tuple of types the class . Given a generic class `Model` with 2 type variables and a concrete model `Model[str, int]`, the value `(str, int)` would be passed to `params`. :return: String representing a the new class where `params` are passed to `cls` as type variables. This method can be overridden to achieve a custom naming scheme for GenericModels. """ param_names = [display_as_type(param) for param in params] params_component = ', '.join(param_names) return f'{cls.__name__}[{params_component}]' @classmethod def __parameterized_bases__(cls, typevars_map: Parametrization) -> Iterator[Type[Any]]: """ Returns unbound bases of cls parameterised to given type variables :param typevars_map: Dictionary of type applications for binding subclasses. Given a generic class `Model` with 2 type variables [S, T] and a concrete model `Model[str, int]`, the value `{S: str, T: int}` would be passed to `typevars_map`. :return: an iterator of generic sub classes, parameterised by `typevars_map` and other assigned parameters of `cls` e.g.: ``` class A(GenericModel, Generic[T]): ... class B(A[V], Generic[V]): ... assert A[int] in B.__parameterized_bases__({V: int}) ``` """ def build_base_model( base_model: Type[GenericModel], mapped_types: Parametrization ) -> Iterator[Type[GenericModel]]: base_parameters = tuple(mapped_types[param] for param in base_model.__parameters__) parameterized_base = base_model.__class_getitem__(base_parameters) if parameterized_base is base_model or parameterized_base is cls: # Avoid duplication in MRO return yield parameterized_base for base_model in cls.__bases__: if not issubclass(base_model, GenericModel): # not a class that can be meaningfully parameterized continue elif not getattr(base_model, '__parameters__', None): # base_model is "GenericModel" (and has no __parameters__) # or # base_model is already concrete, and will be included transitively via cls. continue elif cls in _assigned_parameters: if base_model in _assigned_parameters: # cls is partially parameterised but not from base_model # e.g. cls = B[S], base_model = A[S] # B[S][int] should subclass A[int], (and will be transitively via B[int]) # but it's not viable to consistently subclass types with arbitrary construction # So don't attempt to include A[S][int] continue else: # base_model not in _assigned_parameters: # cls is partially parameterized, base_model is original generic # e.g. cls = B[str, T], base_model = B[S, T] # Need to determine the mapping for the base_model parameters mapped_types: Parametrization = { key: typevars_map.get(value, value) for key, value in _assigned_parameters[cls].items() } yield from build_base_model(base_model, mapped_types) else: # cls is base generic, so base_class has a distinct base # can construct the Parameterised base model using typevars_map directly yield from build_base_model(base_model, typevars_map) def replace_types(type_: Any, type_map: Mapping[Any, Any]) -> Any: """Return type with all occurrences of `type_map` keys recursively replaced with their values. :param type_: Any type, class or generic alias :param type_map: Mapping from `TypeVar` instance to concrete types. :return: New type representing the basic structure of `type_` with all `typevar_map` keys recursively replaced. >>> replace_types(Tuple[str, Union[List[str], float]], {str: int}) Tuple[int, Union[List[int], float]] """ if not type_map: return type_ type_args = get_args(type_) origin_type = get_origin(type_) if origin_type is Annotated: annotated_type, *annotations = type_args return Annotated[replace_types(annotated_type, type_map), tuple(annotations)] if (origin_type is ExtLiteral) or (sys.version_info >= (3, 8) and origin_type is Literal): return type_map.get(type_, type_) # Having type args is a good indicator that this is a typing module # class instantiation or a generic alias of some sort. if type_args: resolved_type_args = tuple(replace_types(arg, type_map) for arg in type_args) if all_identical(type_args, resolved_type_args): # If all arguments are the same, there is no need to modify the # type or create a new object at all return type_ if ( origin_type is not None and isinstance(type_, typing_base) and not isinstance(origin_type, typing_base) and getattr(type_, '_name', None) is not None ): # In python < 3.9 generic aliases don't exist so any of these like `list`, # `type` or `collections.abc.Callable` need to be translated. # See: https://www.python.org/dev/peps/pep-0585 origin_type = getattr(typing, type_._name) assert origin_type is not None # PEP-604 syntax (Ex.: list | str) is represented with a types.UnionType object that does not have __getitem__. # We also cannot use isinstance() since we have to compare types. if sys.version_info >= (3, 10) and origin_type is types.UnionType: # noqa: E721 return _UnionGenericAlias(origin_type, resolved_type_args) return origin_type[resolved_type_args] # We handle pydantic generic models separately as they don't have the same # semantics as "typing" classes or generic aliases if not origin_type and lenient_issubclass(type_, GenericModel) and not type_.__concrete__: type_args = type_.__parameters__ resolved_type_args = tuple(replace_types(t, type_map) for t in type_args) if all_identical(type_args, resolved_type_args): return type_ return type_[resolved_type_args] # Handle special case for typehints that can have lists as arguments. # `typing.Callable[[int, str], int]` is an example for this. if isinstance(type_, (List, list)): resolved_list = list(replace_types(element, type_map) for element in type_) if all_identical(type_, resolved_list): return type_ return resolved_list # For JsonWrapperValue, need to handle its inner type to allow correct parsing # of generic Json arguments like Json[T] if not origin_type and lenient_issubclass(type_, JsonWrapper): type_.inner_type = replace_types(type_.inner_type, type_map) return type_ # If all else fails, we try to resolve the type directly and otherwise just # return the input with no modifications. new_type = type_map.get(type_, type_) # Convert string to ForwardRef if isinstance(new_type, str): return ForwardRef(new_type) else: return new_type def check_parameters_count(cls: Type[GenericModel], parameters: Tuple[Any, ...]) -> None: actual = len(parameters) expected = len(cls.__parameters__) if actual != expected: description = 'many' if actual > expected else 'few' raise TypeError(f'Too {description} parameters for {cls.__name__}; actual {actual}, expected {expected}') DictValues: Type[Any] = {}.values().__class__ def iter_contained_typevars(v: Any) -> Iterator[TypeVarType]: """Recursively iterate through all subtypes and type args of `v` and yield any typevars that are found.""" if isinstance(v, TypeVar): yield v elif hasattr(v, '__parameters__') and not get_origin(v) and lenient_issubclass(v, GenericModel): yield from v.__parameters__ elif isinstance(v, (DictValues, list)): for var in v: yield from iter_contained_typevars(var) else: args = get_args(v) for arg in args: yield from iter_contained_typevars(arg) def get_caller_frame_info() -> Tuple[Optional[str], bool]: """ Used inside a function to check whether it was called globally Will only work against non-compiled code, therefore used only in pydantic.generics :returns Tuple[module_name, called_globally] """ try: previous_caller_frame = sys._getframe(2) except ValueError as e: raise RuntimeError('This function must be used inside another function') from e except AttributeError: # sys module does not have _getframe function, so there's nothing we can do about it return None, False frame_globals = previous_caller_frame.f_globals return frame_globals.get('__name__'), previous_caller_frame.f_locals is frame_globals def _prepare_model_fields( created_model: Type[GenericModel], fields: Mapping[str, Any], instance_type_hints: Mapping[str, type], typevars_map: Mapping[Any, type], ) -> None: """ Replace DeferredType fields with concrete type hints and prepare them. """ for key, field in created_model.__fields__.items(): if key not in fields: assert field.type_.__class__ is not DeferredType # https://github.com/nedbat/coveragepy/issues/198 continue # pragma: no cover assert field.type_.__class__ is DeferredType, field.type_.__class__ field_type_hint = instance_type_hints[key] concrete_type = replace_types(field_type_hint, typevars_map) field.type_ = concrete_type field.outer_type_ = concrete_type field.prepare() created_model.__annotations__[key] = concrete_type
Save